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Among the large variety of organic, inorganic or metalladendri-
mers those bearing ionic sites appear of great interest due to their
properties and uses in different fields ranging from biology, material
sciences and catalysis.1 This is specially the case of polyanionic
phosphorus dendrimers bearing carboxylic, sulfonic, phosphonic
or bisphosphonic end groups2 and of polycationic phosphorus den-
drimers decorated on their surface with ammonium groups.3 In
marked contrast very little is known about the design of dendrimers
incorporating phosphonium end groups. This is quite surprising
taking into account the importance of phosphonium or polyphos-
phoniums in organic synthesis and related fields.4 Indeed in a pio-
neering work Rengan and Engel5 reported an elegant synthesis of
phosphorus dendrimers 1 in which the core and branches are phos-
phonium ion sites. Phosphorus dendrimers containing zwitterionic
ll rights reserved.
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anionic zirconocene complexes 2 were also described via formal
cycloaddition reactions between phosphino zirconocene and den-
drimers with terminal aldehyde groups.6 However, the design of
all these cationic or zwitterionic phosphonium dendrimers is re-
stricted up to now to species incorporating exclusively phosphorus
carbon bonds thus limiting their use. Therefore there is a need to
diversify the methods of synthesis allowing to substitute some
phosphorus carbon bonds with more reactive phosphorus bonds.
To this end we here report on an efficient synthetic strategy allow-
ing to create on the outer shell of original dendrimers of generations
1–3 phosphonium centres bearing both P–C and P–N bonds using
various functionalized (or not) primary or secondary amines.

On the basis of the work of some of us on metallated ylides exhib-
iting a high nucleophilicity,7 we investigated two ways to prepare
fr (M. Taillefer), majoral@lcc-toulouse.fr (J.-P. Majoral).



Figure 1. General structures of the new neutral and charged dendrimers. The numbering used for NMR signals assignment is shown on G3 and on one R. Lower part: 31P NMR
spectra of compounds 9, 10 and 11.

Scheme 1. Synthesis of phosphonium ended dendrimers 9–11.
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aminophosphonium dendrimers (Fig. 1). The first one consists in the
treatment of dendrimers 3–5 of generation 1, 2 or 3 bearing, respec-
tively, 12, 24 or 48 terminal phosphino groups8 with C2Cl6 giving
rise to the halogeno phosphorane dendrimers 6–8 which in the
presence of NH3 should afford dendrimers incorporating amino-
phosphonium groups7a,b (Scheme 1). However the high sensitivity
to oxidation of the halogenophosphorane moieties in 6–8 prevents
from the isolation of the final monodisperse dendrimers 9–11.
Inseparable polydisperse dendrimers 12–14 bearing both terminal
aminophosphonium and phosphino oxide groups in various ratios
were formed.

To overcome these difficulties another strategy was successfully
developed as it is described in Scheme 1, based on the use of both
excess of ammonia and bromine.7e Reactions were monitored by
NMR. As an example the formation of the dendrimer of generation
1, 9 (Scheme 1, Fig 1) results in the disappearance in 31P NMR of
the signal of the twelve terminal phosphino groups in 3
(d = �5.9 ppm) on behalf of a new signal at 36.4 ppm characteristic



Scheme 2. Synthesis of phosphonium ended dendrimers 15–20.
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of aminophosphonium units (d = 36.5 ppm for [ArPh2P–NH2] Br).
1H NMR spectra exhibit a new broad signal at 6.92 ppm due to
the presence of P–NH2 pattern.. MALDI-TOF mass spectrometry
shows a peak at 4909 (expected mass: 4921 for the cationic part
of 9) arising from the loss of HBr (12 equiv) with the formation
of a dendrimer bearing twelve iminophosphorane linkages (termi-
nal –PPh2 = NH groups). This phenomenon was also observed with
the monomer [Ph3P–NH2] Br (observed mass 277 instead of 278
resulting from elimination of HBr and formation of Ph3P@NH).

Such a methodology of incorporation of aminophosphonium
was extended to dendrimers of generations 2 and 3, that is, 4
and 5 allowing the isolation and the characterization of the unique
aminophosphonium dendrimers 10 and 11.9 Here also the course
of the reactions is followed by 31P NMR spectroscopy which shows
a new broad signal at 34.8 ppm for 10 and 11 in addition to the
other unchanged characteristic signals of the phosphorus back-
bone of the two dendrimers. Similarly the formation of NH2 is
observed in 1H NMR (d = 6.97 and 7.24 ppm, respectively, for 10
and 11).

The next step was to generalize this method to the grafting of
various functionalized amines or amines which might increase
the solubility of the resulting polycationic dendrimers. Reactions
were conducted with n-propylamine, n-butylamine and dendri-
mers 3 and 5. The resulting dendrimers 15 and 16 (generations 1
and 2, n-propylaminophosphonium end groups), 17 (generation
1, n-butylamino phosphonium end groups) were isolated in good
to excellent yields (60–91%) (Scheme 2).10 13C NMR data afford
additional proof to the formation of the desired polycationic den-
drimers since in all cases the signal of the carbon atom a to nitro-
gen (PNHCH2) on the surface of dendrimers appears as a doublet or
a broad singlet due to carbon–phosphorus coupling (e.g.,
dC = 23.4 ppm, 2JCP = 7.3 Hz in 16). As expected the solubility of
the dendrimers increases dramatically from 12–14 to 15–16 and fi-
nally 17 in various organic solvents.

Similarly the treatment of dendrimers 3–5 with a functionalized
amine as propargylamine in the presence of an excess of bromine
led to the formation of propargylaminophosphonium dendrimers
18–20 obtained in 71–91% yield.11 The grafting of the propargyl-
amine on the dendrimeric scaffold is corroborated by 31P NMR
spectroscopy. Indeed, the signals of the phosphino groups for 3–5
Scheme 3. Formation of iminophosphorane ended dendrimer 21.
at �5.86 to �6.17 ppm disappear on behalf of the signals due to
the resulting phosphonium moieties at 39.0–39.1 ppm for 18–20
(Scheme 3).

In conclusion we have demonstrated that it is possible to pre-
pare a variety of new polycationic dendrimers based on surface
modification of phosphorus dendrimers bearing terminal phos-
phino groups. A set of original aminophosphonium ended dendri-
mers with P–N and P–C bonds was prepared. Their reactivity and
properties will be investigated but in a preliminary experiment
we observed that the treatment of 9 with tBuOK allows a clean
deprotonation of the surface of such a dendrimer with the forma-
tion of the dendrimer 21 bearing 12 iminophosphorane units
(Scheme 3), thus opening new perspectives for their use due to
the versatile reactivity of iminophosphorane monomers.7a,12
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